ArrayList源码分析
1 初始化
ArrayList类定义,通过类定义可以分析出ArrayList具备了RandomAccess(支持随机访问)、Cloneable(可以被复制)、Serializable(序列化)
public class ArrayList<E> extends AbstractList<E>
implements List<E>, RandomAccess, Cloneable, java.io.Serializable{
}
初始化类属性,DEFAULT_CAPACITY(默认容量大小)、EMPTY_ELEMENTDATA(用来置空数组的)、DEFAULTCAPACITY_EMPTY_ELEMENTDATA(初始化时候的数组,根据下面代码看来,初始化的时候elementData默认指向DEFAULTCAPACITY_EMPTY_ELEMENTDATA)、elementData(存放元素)、size(当前数组大小)
/**
* Default initial capacity.
*/
private static final int DEFAULT_CAPACITY = 10;
/**
* Shared empty array instance used for empty instances.
*/
private static final Object[] EMPTY_ELEMENTDATA = {};
/**
* Shared empty array instance used for default sized empty instances. We
* distinguish this from EMPTY_ELEMENTDATA to know how much to inflate when
* first element is added.
*/
private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};
/**
* The array buffer into which the elements of the ArrayList are stored.
* The capacity of the ArrayList is the length of this array buffer. Any
* empty ArrayList with elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
* will be expanded to DEFAULT_CAPACITY when the first element is added.
*/
transient Object[] elementData; // non-private to simplify nested class access
/**
* The size of the ArrayList (the number of elements it contains).
*
* @serial
*/
private int size;
public ArrayList() {
this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
}
添加元素
ArrayList通过add方法来进行添加元素,ensureCapacityInternal
这个方法比较复杂,稍后进行讲解,其实ArrayList底部还是数组,添加元素无非是给指定下标指向e到对象而已,然后size++。从这里看来ArrayList是非线程安全的。
public boolean add(E e) {
ensureCapacityInternal(size + 1); // Increments modCount!!
elementData[size++] = e;
return true;
}
接下来看看ensureCapacityInternal
这个方法
private void ensureCapacityInternal(int minCapacity) {
//判断是不是空元素,如果是空就把minCapacity置为DEFAULT_CAPACITY和minCapacity中的最大值
if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity);
}
ensureExplicitCapacity(minCapacity);
}
private void ensureExplicitCapacity(int minCapacity) {
modCount++;
//判断是否需要增加集合大小,如果minCapacity值大于elementData.length那么就调用grow方法
// overflow-conscious code
if (minCapacity - elementData.length > 0)
grow(minCapacity);
}
接下来看看关键性的grow方法
private void grow(int minCapacity) {
// overflow-conscious code
//获取到当前集合的大小
int oldCapacity = elementData.length;
//确定新集合的大小,是当前集合大小+oldCapacity左移位运算类似除于2
int newCapacity = oldCapacity + (oldCapacity >> 1);
//如果最新集合大小如果比minCapacity小,那么增加的大小就用minCapacity
if (newCapacity - minCapacity < 0)
newCapacity = minCapacity;
//如果newCapacity的值大于MAX_ARRAY_SIZE
//MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8,那么调用hugeCapacity
if (newCapacity - MAX_ARRAY_SIZE > 0)
newCapacity = hugeCapacity(minCapacity);
// minCapacity is usually close to size, so this is a win:
//原生方法进行数组复制
elementData = Arrays.copyOf(elementData, newCapacity);
}
//返回最大值
private static int hugeCapacity(int minCapacity) {
if (minCapacity < 0) // overflow
throw new OutOfMemoryError();
return (minCapacity > MAX_ARRAY_SIZE) ?
Integer.MAX_VALUE :
MAX_ARRAY_SIZE;
}
上述方法主要是当数组长度不够时,自动增长数组的长度,增长因子是当前长度的二分之一。也就是说增长后=oldLength+oldLength>>1
添加元素到指定位置
添加元素到指定位置,这个方法效率比较低,需要进行对元素的大量移动操作
public void add(int index, E element) {
//判断是否超过当前数组大小
rangeCheckForAdd(index);
ensureCapacityInternal(size + 1); // Increments modCount!!
//index开始的元素后移一位
System.arraycopy(elementData, index, elementData, index + 1,
size - index);
elementData[index] = element;
size++;
}
删除某个位置的元素
基本跟add(int index, E element)这个方法没有太大区别,一个是数组向后移动,一个是向前移动
public E remove(int index) {
rangeCheck(index);
modCount++;
E oldValue = elementData(index);
int numMoved = size - index - 1;
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
elementData[--size] = null; // clear to let GC do its work
return oldValue;
}
删除某个元素
删除某个元素的时候,主要是根据equals方法去判断是否是同一个对象的。
public boolean remove(Object o) {
if (o == null) {
//移除null对象
for (int index = 0; index < size; index++)
if (elementData[index] == null) {
fastRemove(index);
return true;
}
} else {
//主要是调用equals方法判断是否是同一个对象
for (int index = 0; index < size; index++)
if (o.equals(elementData[index])) {
fastRemove(index);
return true;
}
}
return false;
}
/*
* Private remove method that skips bounds checking and does not
* return the value removed.
*/
private void fastRemove(int index) {
modCount++;
int numMoved = size - index - 1;
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
elementData[--size] = null; // clear to let GC do its work
}